- кольцо линейных преобразований
- ring of linear transformations
Русско-английский научно-технический словарь Масловского. 2015.
Русско-английский научно-технический словарь Масловского. 2015.
САМОИНЪЕКТИВНОЕ КОЛЬЦО — л е в о е кольцо, инъективное как левый модуль над собой. Симметричным образом определяется п р а в о е С. к. Классически полупростые кольца и все кольца вычетов суть С. к. Если R С. к. с радикалом Джекобсона J, то факторкольцо R/J регулярно в… … Математическая энциклопедия
ГЛАВНЫХ ИДЕАЛОВ КОЛЬЦО — ассоциативное кольцо R с единицей, в к ром все левые п правые идеалы являются главными, т. е. имеют вид и , соответственно, где . Примеры Г. и. к.: кольцо целых чисел, кольцо многочленов над полем F, кольцо косых многочленов над полем Fс… … Математическая энциклопедия
ГАЛУА ТЕОРИЯ КОЛЕЦ — обобщение результатов теории Галуа полей на случай ассоциативных колец с единицей. Пусть А ассоциативное кольцо с единицей, Н некоторая подгруппа группы всех автоморфизмов кольца А, N подгруппа группы Н, . Тогда подкольцо кольца А. Пусть… … Математическая энциклопедия
АССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — кольца и алгебры с ассоциативным умножением, т. е. множества с двумя бинарными операциями сложением + и умножением Х, являющиеся абелевой группой по сложению и полугруппой по умножению, причем умножение дистрибутивно (слева и справа) относительно … Математическая энциклопедия
НЕПРИВОДИМЫЙ МОДУЛЬ — простой модуль, ненулевой унитарный модуль Мнад кольцом Д с единицей, содержащий лишь два подмодуля нулевой и сам М. Примеры: 1) если кольцо целых чисел, то неприводимые R модули это абелевы группы простого порядка; 2) если R тело, то… … Математическая энциклопедия
Матрица (математика) — У этого термина существуют и другие значения, см. Матрица. Матрица математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет… … Википедия
ИНВАРИАНТОВ ТЕОРИЯ — в классическом определении алгебраическая теория (иногда называемая также алгебраической И. т.), изучающая алгебраич. выражения (многочлены, рациональные функции или их совокупности), изменяющиеся определенным образом при невырожденных линейных… … Математическая энциклопедия
АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… … Математическая энциклопедия
ЛИНЕЙНАЯ АЛГЕБРА — раздел алгебры, в к ром изучаются векторные (линейные) пространства, линейные операторы (линейные отображения), линейные, билинейные и квадратичные функции (функционалы или формы) на векторных пространствах. Исторически первым разделом Л. а. была … Математическая энциклопедия
ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ МНОГООБРАЗИЙ — раздел дифференциальной геометрии, изучающий различные инфинитезималъные структуры на многообразии и их связи со структурой многообразия и его топологией. К середине 19 в. в результате возникновения неевклидовой геометрии Лобачевского,… … Математическая энциклопедия
ЛИНЕЙНАЯ ГРУППА — группа линейных преобразований векторного пространства Vконечной размерности n над нек рым телом К. Выбор базиса в пространстве Vреализует Л. г. как группу невырожденных квадратных матриц степени пнад телом К. Тем самым устанавливается изоморфизм … Математическая энциклопедия